
Music & Audio Programming  
Design Explorations 

James McCartney 
The Future of SuperCollider 2025



Contents

• A language implementation 

• Code generation for synth definitions



Language
• buzzword synopsis: 

• dynamically typed, interpreted, mostly functional, and object 
oriented, w/ linearized multiple inheritance, multiple argument 
dispatch, immutable fully persistent data types, thread safe 
mutable data, pervasive auto-mapping (like APL), a concurrent 
runtime, reference counted…



Language
• buzzword synopsis: 

• dynamically typed, interpreted, mostly functional, and object 
oriented, w/ linearized multiple inheritance, multiple argument 
dispatch, immutable fully persistent data types, thread safe 
mutable data, pervasive auto-mapping (like APL), a concurrent 
runtime, reference counted…



some SuperCollider issues

• Can’t dynamically add classes and methods 

• No name spaces for classes 

• Single threaded interpreter 

• Too easy to introduce garbage collector bugs in primitives 

• Double dispatch (e.g., for math) is clunky



some SuperCollider issues

• Can’t dynamically add classes and methods 

• No name spaces for classes 

• Single threaded interpreter 

• Too easy to introduce garbage collector bugs in primitives 

• Double dispatch (e.g., for math) is clunky



Dynamically add  
classes and functions



Dynamically add  
classes and functions



Dynamically add  
classes and functions



Dynamically add  
classes and functions



Dynamically add  
classes and functions



Dynamically add  
classes and functions



Dynamically add  
classes and functions



some SuperCollider issues

• Can’t dynamically add classes and methods 

• No name spaces for classes 

• Single threaded interpreter 

• Too easy to introduce garbage collector bugs in primitives 

• Double dispatch (e.g., for math) is clunky



Modules
• Modules allow name-spacing



Modules
• Modules allow name-spacing



Modules
• Modules allow name-spacing



Modules
• Modules allow name-spacing



Modules
• Modules allow name-spacing



Modules
• Modules allow name-spacing



some SuperCollider issues

• Can’t dynamically add classes and methods 

• No name spaces for classes 

• Single threaded interpreter 

• Too easy to introduce garbage collector bugs in primitives 

• Double dispatch (e.g., for math) is clunky



SC interpreter single threaded

• Class library contains global mutable state  

• Garbage collector is global mutable state 

• All objects are mutable



Rule of safe concurrency 

• Do not share mutable state.

• You can have immutable state and share it 

• You can have mutable state but not share it = thread local 

• You can protect against concurrent access by using a mutex



Thread safe data

• Most objects are immutable 

• Records, Arrays, Maps, Tuples, Lists 

• You “modify” them by creating a changed copy. 

• Those few objects that are mutable are protected by a mutex 

• Ref, Queue, Stack



Immutable data implementation

• Uses same kinds of data structures as found in Clojure 

• persistent Vectors, Maps, Sets 

• I use the “immer” C++ library  
by Juan Pedro Bolívar Puente.  
https://github.com/arximboldi/immer



A fully persistent data structure allows
• access to all previous versions after each modification,  

• preserving the complete history of changes while creating new versions  

• that share structure with older ones to minimize memory usage.  

• Each operation creates a new version without modifying existing 
versions,  

• enabling efficient time travel through the structure's entire evolution.  

• Can be safely shared across threads 

• Copying is as cheap as copying a pointer



Immutable data &  
Garbage Collection

• No mutation means no garbage collector write barriers 

• Reference cycles are not possible without mutation or laziness 

• So, use reference counting 

• Reference counting is easy to make thread safe 

• Not as error prone as remembering to insert write barriers 

• Cycles CAN occur using thread-safe mutable Refs



No global variables
• The top level scope is thread local 

• The top level scope is mutable (which is safe because it is not shared) 

• it is maintained in a persistent dictionary 

• Forked threads get a copy of the parent thread’s local state, 
which then becomes independent 

• That copy is cheap because everything is shared. 

• Shared `blackboards` of data can be done using Refs



some SuperCollider issues

• Can’t dynamically add classes and methods 

• No name spaces for classes 

• Single threaded interpreter 

• Too easy to introduce garbage collector bugs in primitives 

• Double dispatch (e.g., for math) is clunky



Multimethods
• To implement math operations in SC, double dispatch is needed 

• Lots of implementations of `performBinaryOpOnSimpleNumber` 

• Multiple argument dispatch -> all arguments determine method 

• Classes do not contain methods 

• Multimethods are defined outside of any class 

• Multimethod dispatch can catch some dynamic type errors earlier



Multimethods
• Functions that belong together aren’t spread out over the class 

library.

• Adding multiple specialized arguments provides run-time type 
checking



Multimethods
• Sometimes you want multiple implementations based on the second 

argument.



Auto-mapping
• If a function expects a single item for an argument, but instead 

receives an array or list, then the function is applied to every 
element of the array and an array or list is returned. 

• Note:   x f   is equivalent to   f(x)



Auto-mapping
• The @ operator can be used to force auto mapping, do Cartesian 

mapping, and for constructing data structures.



Code generation
• all signals are matrices 

• supports 32 and 64 bit, integer and floating point signals 

• supports multi rate, including intermittent, triggered or gated subgraphs 

• delays are written as difference equations (like letrec in Faust) 

• block diagram operators as in Faust ( , : :> <: ~ ) are not necessary 

• you have auto-mapping, algorithmic construction, a much higher level 
language



Graph of nodes
• Graphs are by calling functions that create nodes 

• node types are 

• constants 

• math operators: + - * / % abs sin log FFT

• Delays : init read write 

• I/O: inputs, outputs, control 

• Control flow: if switch for 

• Matrix manipulation: take skip slice stride rotate transpose reverse



Signal types

• Every signal has: 

• a matrix shape: rows x columns 

• an element type: i32, i64, f32, f64 

• a rate: constant, init time, reset, event, audio



Graph construction

• Constant folding 

• Rate inference 

• Common subexpression elimination 

• Algebraic simplification via graph rewriting



Expression rewriting
• Use math identities to simplify expressions 

• Try to factor out lower rate operations so moved off of audio rate.

• Rules are pattern matched 

• LHS is replaced by RHS 

• more than 120 rules currently



Compiler passes
• Merge delays 

• Topological sort of graph 

• Calculate delay lengths 

• Shape inference 

• Type inference 

• Cut graph into expression trees

• Put trees into matrix loops  
          = loop fusion 

• Separate loops by rate 

• init, reset, event, audio 

• Emit C++ code 

• Compile C++, link, load



Coding ugens and synthdefs





• A 0.4 Hz low frequency sawtooth times 24 semitones 

• plus 2 channel (8 Hz and 7.23 Hz) sawtooth times 3 semitones 

• plus 81 semitones 

• |> piped into nnhz which converts MIDI note numbers to Hertz 

• into a sine oscillator times 0.04 (4c) 

• |> piped to a fixed delay comb echo delay 

• sent to an outlet



Defining a unit generator



Defining a unit generator



Defining a unit generator



A lot remains to do

• Events 

• Code generation 

• Scheduler 

• Synth Server protocol 

• SIMD code gen - existed in a previous version, needs to be re-done



Related work
• Language 

• Dylan - multimethods, multiple inheritance 

• Clojure - persistent data structures, Hash array mapped tries. 

• Code generation 

• Kronos - Vesa Norilo - multi-rate, reactive 

• Arrp - Jakob Leben - multi-rate, multi dimensional signals



Video SynthExperiment

• Generates random trees of functions from (x, y) to (r, g, b) 

• Generates Metal shader code from the tree. 

• Renders a tree + a vector of random parameters as an image. 

• Renders a tree + a list of paramter vectors as a video



Demo



Other talks

•  Codefest 2021  
              https://www.youtube.com/watch?v=fmVdfQNPzkE 

•  Darwin Grosse podcast 2021 
              https://www.youtube.com/watch?v=qmayIRViJms


