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mutable data, pervasive auto-mapping (like APL), a concurrent 
runtime, reference counted…



Language
• buzzword synopsis: 

• dynamically typed, interpreted, mostly functional, and object 
oriented, w/ linearized multiple inheritance, multiple argument 
dispatch, immutable fully persistent data types, thread safe 
mutable data, pervasive auto-mapping (like APL), a concurrent 
runtime, reference counted…



some SuperCollider issues

• Can’t dynamically add classes and methods 

• No name spaces for classes 

• Single threaded interpreter 

• Too easy to introduce garbage collector bugs in primitives 

• Double dispatch (e.g., for math) is clunky
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SC interpreter single threaded

• Class library contains global mutable state  

• Garbage collector is global mutable state 

• All objects are mutable



Rule of safe concurrency 

• Do not share mutable state.

• You can have immutable state and share it 

• You can have mutable state but not share it = thread local 

• You can protect against concurrent access by using a mutex



Thread safe data

• Most objects are immutable 

• Records, Arrays, Maps, Tuples, Lists 

• You “modify” them by creating a changed copy. 

• Those few objects that are mutable are protected by a mutex 

• Ref, Queue, Stack



Immutable data implementation

• Uses same kinds of data structures as found in Clojure 

• persistent Vectors, Maps, Sets 

• I use the “immer” C++ library  
by Juan Pedro Bolívar Puente.  
https://github.com/arximboldi/immer



A fully persistent data structure allows
• access to all previous versions after each modification,  

• preserving the complete history of changes while creating new versions  

• that share structure with older ones to minimize memory usage.  

• Each operation creates a new version without modifying existing 
versions,  

• enabling efficient time travel through the structure's entire evolution.  

• Can be safely shared across threads 

• Copying is as cheap as copying a pointer



Immutable data &  
Garbage Collection

• No mutation means no garbage collector write barriers 

• Reference cycles are not possible without mutation or laziness 

• So, use reference counting 

• Reference counting is easy to make thread safe 

• Not as error prone as remembering to insert write barriers 

• Cycles CAN occur using thread-safe mutable Refs



No global variables
• The top level scope is thread local 

• The top level scope is mutable (which is safe because it is not shared) 

• it is maintained in a persistent dictionary 

• Forked threads get a copy of the parent thread’s local state, 
which then becomes independent 

• That copy is cheap because everything is shared. 

• Shared `blackboards` of data can be done using Refs
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Multimethods
• To implement math operations in SC, double dispatch is needed 

• Lots of implementations of `performBinaryOpOnSimpleNumber` 

• Multiple argument dispatch -> all arguments determine method 

• Classes do not contain methods 

• Multimethods are defined outside of any class 

• Multimethod dispatch can catch some dynamic type errors earlier



Multimethods
• Functions that belong together aren’t spread out over the class 

library.

• Adding multiple specialized arguments provides run-time type 
checking



Multimethods
• Sometimes you want multiple implementations based on the second 

argument.



Auto-mapping
• If a function expects a single item for an argument, but instead 

receives an array or list, then the function is applied to every 
element of the array and an array or list is returned. 

• Note:   x f   is equivalent to   f(x)



Auto-mapping
• The @ operator can be used to force auto mapping, do Cartesian 

mapping, and for constructing data structures.



Code generation
• all signals are matrices 

• supports 32 and 64 bit, integer and floating point signals 

• supports multi rate, including intermittent, triggered or gated subgraphs 

• delays are written as difference equations (like letrec in Faust) 

• block diagram operators as in Faust ( , : :> <: ~ ) are not necessary 

• you have auto-mapping, algorithmic construction, a much higher level 
language



Graph of nodes
• Graphs are by calling functions that create nodes 

• node types are 

• constants 

• math operators: + - * / % abs sin log FFT

• Delays : init read write 

• I/O: inputs, outputs, control 

• Control flow: if switch for 

• Matrix manipulation: take skip slice stride rotate transpose reverse



Signal types

• Every signal has: 

• a matrix shape: rows x columns 

• an element type: i32, i64, f32, f64 

• a rate: constant, init time, reset, event, audio



Graph construction

• Constant folding 

• Rate inference 

• Common subexpression elimination 

• Algebraic simplification via graph rewriting



Expression rewriting
• Use math identities to simplify expressions 

• Try to factor out lower rate operations so moved off of audio rate.

• Rules are pattern matched 

• LHS is replaced by RHS 

• more than 120 rules currently



Compiler passes
• Merge delays 

• Topological sort of graph 

• Calculate delay lengths 

• Shape inference 

• Type inference 

• Cut graph into expression trees

• Put trees into matrix loops  
          = loop fusion 

• Separate loops by rate 

• init, reset, event, audio 

• Emit C++ code 

• Compile C++, link, load



Coding ugens and synthdefs





• A 0.4 Hz low frequency sawtooth times 24 semitones 

• plus 2 channel (8 Hz and 7.23 Hz) sawtooth times 3 semitones 

• plus 81 semitones 

• |> piped into nnhz which converts MIDI note numbers to Hertz 

• into a sine oscillator times 0.04 (4c) 

• |> piped to a fixed delay comb echo delay 

• sent to an outlet



Defining a unit generator
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A lot remains to do

• Events 

• Code generation 

• Scheduler 

• Synth Server protocol 

• SIMD code gen - existed in a previous version, needs to be re-done



Related work
• Language 

• Dylan - multimethods, multiple inheritance 

• Clojure - persistent data structures, Hash array mapped tries. 

• Code generation 

• Kronos - Vesa Norilo - multi-rate, reactive 

• Arrp - Jakob Leben - multi-rate, multi dimensional signals



Video SynthExperiment

• Generates random trees of functions from (x, y) to (r, g, b) 

• Generates Metal shader code from the tree. 

• Renders a tree + a vector of random parameters as an image. 

• Renders a tree + a list of paramter vectors as a video



Demo



Other talks

•  Codefest 2021  
              https://www.youtube.com/watch?v=fmVdfQNPzkE 

•  Darwin Grosse podcast 2021 
              https://www.youtube.com/watch?v=qmayIRViJms


